Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior
نویسندگان
چکیده
منابع مشابه
Automatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملSpeech waveform synthesis from MFCC sequences with generative adversarial networks
This paper proposes a method for generating speech from filterbank mel frequency cepstral coefficients (MFCC), which are widely used in speech applications, such as ASR, but are generally considered unusable for speech synthesis. First, we predict fundamental frequency and voicing information from MFCCs with an autoregressive recurrent neural net. Second, the spectral envelope information conta...
متن کاملFull waveform seismic inversion using a distributed system of computers
The aim of seismic waveform inversion is to estimate the elastic properties of the Earth’s subsurface layers from recordings of seismic waveform data. This is usually accomplished by using constrained optimization often based on very simplistic assumptions. Full waveform inversion uses a more accurate wave propagation model but is extremely difficult to use for routine analysis and interpretati...
متن کاملSpectral Image Visualization Using Generative Adversarial Networks
Spectral images captured by satellites and radiotelescopes are analyzed to obtain information about geological compositions distributions, distant asters as well as undersea terrain. Spectral images usually contain tens to hundreds of continuous narrow spectral bands and are widely used in various fields. But the vast majority of those image signals are beyond the visible range, which calls for...
متن کاملCreating Virtual Universes Using Generative Adversarial Networks
Inferring model parameters from experimental data is a grand challenge in many sciences, including cosmology. This often relies critically on high fidelity numerical simulations, which are prohibitively computationally expensive. The application of deep learning techniques to generative modeling is renewing interest in using high dimensional density estimators as computationally inexpensive emu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Geosciences
سال: 2019
ISSN: 1874-8961,1874-8953
DOI: 10.1007/s11004-019-09832-6